extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q8).1C23 = C42.15D4 | φ: C23/C1 → C23 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).1C2^3 | 128,934 |
(C2×Q8).2C23 = C42.16D4 | φ: C23/C1 → C23 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).2C2^3 | 128,935 |
(C2×Q8).3C23 = C42.17D4 | φ: C23/C1 → C23 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).3C2^3 | 128,936 |
(C2×Q8).4C23 = Q8≀C2 | φ: C23/C1 → C23 ⊆ Out C2×Q8 | 16 | 4- | (C2xQ8).4C2^3 | 128,937 |
(C2×Q8).5C23 = D8⋊11D4 | φ: C23/C1 → C23 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).5C2^3 | 128,2020 |
(C2×Q8).6C23 = D8.13D4 | φ: C23/C1 → C23 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).6C2^3 | 128,2021 |
(C2×Q8).7C23 = D8○SD16 | φ: C23/C1 → C23 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).7C2^3 | 128,2022 |
(C2×Q8).8C23 = D8⋊6D4 | φ: C23/C1 → C23 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).8C2^3 | 128,2023 |
(C2×Q8).9C23 = D8○Q16 | φ: C23/C1 → C23 ⊆ Out C2×Q8 | 32 | 4- | (C2xQ8).9C2^3 | 128,2025 |
(C2×Q8).10C23 = C2×C42.C4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).10C2^3 | 128,862 |
(C2×Q8).11C23 = C2×C42.3C4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).11C2^3 | 128,863 |
(C2×Q8).12C23 = (C2×D4).135D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).12C2^3 | 128,864 |
(C2×Q8).13C23 = C4⋊Q8.C4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).13C2^3 | 128,865 |
(C2×Q8).14C23 = C4⋊1D4.C4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).14C2^3 | 128,866 |
(C2×Q8).15C23 = (C2×D4).137D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).15C2^3 | 128,867 |
(C2×Q8).16C23 = C2×C22⋊Q16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).16C2^3 | 128,1731 |
(C2×Q8).17C23 = C2×D4.7D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).17C2^3 | 128,1733 |
(C2×Q8).18C23 = C24.103D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).18C2^3 | 128,1734 |
(C2×Q8).19C23 = C24.178D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).19C2^3 | 128,1736 |
(C2×Q8).20C23 = C24.104D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).20C2^3 | 128,1737 |
(C2×Q8).21C23 = C24.106D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).21C2^3 | 128,1739 |
(C2×Q8).22C23 = D4.(C2×D4) | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).22C2^3 | 128,1741 |
(C2×Q8).23C23 = Q8.(C2×D4) | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).23C2^3 | 128,1743 |
(C2×Q8).24C23 = (C2×D4)⋊21D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).24C2^3 | 128,1744 |
(C2×Q8).25C23 = C2×D4.8D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).25C2^3 | 128,1748 |
(C2×Q8).26C23 = C2×D4.10D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).26C2^3 | 128,1749 |
(C2×Q8).27C23 = C42.313C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8).27C2^3 | 128,1750 |
(C2×Q8).28C23 = M4(2).C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).28C2^3 | 128,1752 |
(C2×Q8).29C23 = C42.12C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).29C2^3 | 128,1753 |
(C2×Q8).30C23 = C42.13C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).30C2^3 | 128,1754 |
(C2×Q8).31C23 = C2×D4.D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).31C2^3 | 128,1762 |
(C2×Q8).32C23 = C2×D4.2D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).32C2^3 | 128,1763 |
(C2×Q8).33C23 = C2×C4⋊2Q16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).33C2^3 | 128,1765 |
(C2×Q8).34C23 = C2×Q8.D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).34C2^3 | 128,1766 |
(C2×Q8).35C23 = C42.443D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).35C2^3 | 128,1767 |
(C2×Q8).36C23 = C42.211D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).36C2^3 | 128,1768 |
(C2×Q8).37C23 = C42.445D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).37C2^3 | 128,1771 |
(C2×Q8).38C23 = C42.446D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).38C2^3 | 128,1772 |
(C2×Q8).39C23 = C42.14C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).39C2^3 | 128,1773 |
(C2×Q8).40C23 = C42.15C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).40C2^3 | 128,1774 |
(C2×Q8).41C23 = C42.17C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).41C2^3 | 128,1776 |
(C2×Q8).42C23 = C42.18C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).42C2^3 | 128,1777 |
(C2×Q8).43C23 = C42.19C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).43C2^3 | 128,1778 |
(C2×Q8).44C23 = C2×C8⋊8D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).44C2^3 | 128,1779 |
(C2×Q8).45C23 = C2×C8.18D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).45C2^3 | 128,1781 |
(C2×Q8).46C23 = C24.144D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).46C2^3 | 128,1782 |
(C2×Q8).47C23 = C2×C8⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).47C2^3 | 128,1783 |
(C2×Q8).48C23 = C2×C8.D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).48C2^3 | 128,1785 |
(C2×Q8).49C23 = C24.110D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).49C2^3 | 128,1786 |
(C2×Q8).50C23 = M4(2)⋊14D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).50C2^3 | 128,1787 |
(C2×Q8).51C23 = M4(2)⋊15D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).51C2^3 | 128,1788 |
(C2×Q8).52C23 = (C2×C8)⋊11D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).52C2^3 | 128,1789 |
(C2×Q8).53C23 = C8.D4⋊C2 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).53C2^3 | 128,1791 |
(C2×Q8).54C23 = (C2×C8)⋊13D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).54C2^3 | 128,1792 |
(C2×Q8).55C23 = (C2×C8)⋊14D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).55C2^3 | 128,1793 |
(C2×Q8).56C23 = M4(2)⋊16D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).56C2^3 | 128,1794 |
(C2×Q8).57C23 = M4(2)⋊17D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).57C2^3 | 128,1795 |
(C2×Q8).58C23 = C2×D4.3D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).58C2^3 | 128,1796 |
(C2×Q8).59C23 = C2×D4.5D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).59C2^3 | 128,1798 |
(C2×Q8).60C23 = M4(2).10C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).60C2^3 | 128,1799 |
(C2×Q8).61C23 = M4(2).37D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).61C2^3 | 128,1800 |
(C2×Q8).62C23 = M4(2).38D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).62C2^3 | 128,1801 |
(C2×Q8).63C23 = C2×C23.47D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).63C2^3 | 128,1818 |
(C2×Q8).64C23 = C2×C23.20D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).64C2^3 | 128,1820 |
(C2×Q8).65C23 = C2×C23.48D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).65C2^3 | 128,1822 |
(C2×Q8).66C23 = C24.115D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).66C2^3 | 128,1823 |
(C2×Q8).67C23 = C24.183D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).67C2^3 | 128,1824 |
(C2×Q8).68C23 = C24.116D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).68C2^3 | 128,1825 |
(C2×Q8).69C23 = C24.118D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).69C2^3 | 128,1827 |
(C2×Q8).70C23 = (C2×D4).302D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).70C2^3 | 128,1829 |
(C2×Q8).71C23 = (C2×D4).303D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).71C2^3 | 128,1830 |
(C2×Q8).72C23 = (C2×D4).304D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).72C2^3 | 128,1831 |
(C2×Q8).73C23 = C42.222D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).73C2^3 | 128,1833 |
(C2×Q8).74C23 = C42.225D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).74C2^3 | 128,1837 |
(C2×Q8).75C23 = C42.451D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).75C2^3 | 128,1839 |
(C2×Q8).76C23 = C42.228D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).76C2^3 | 128,1842 |
(C2×Q8).77C23 = C42.231D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).77C2^3 | 128,1845 |
(C2×Q8).78C23 = C42.232D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).78C2^3 | 128,1846 |
(C2×Q8).79C23 = C42.234D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).79C2^3 | 128,1848 |
(C2×Q8).80C23 = C42.352C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).80C2^3 | 128,1850 |
(C2×Q8).81C23 = C42.354C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).81C2^3 | 128,1852 |
(C2×Q8).82C23 = C42.357C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).82C2^3 | 128,1855 |
(C2×Q8).83C23 = C42.359C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).83C2^3 | 128,1857 |
(C2×Q8).84C23 = C2×C4.SD16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).84C2^3 | 128,1861 |
(C2×Q8).85C23 = C2×C42.78C22 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).85C2^3 | 128,1862 |
(C2×Q8).86C23 = C42.355D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).86C2^3 | 128,1863 |
(C2×Q8).87C23 = C2×C42.28C22 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).87C2^3 | 128,1864 |
(C2×Q8).88C23 = C2×C42.30C22 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).88C2^3 | 128,1866 |
(C2×Q8).89C23 = C42.239D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).89C2^3 | 128,1867 |
(C2×Q8).90C23 = C42.366C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).90C2^3 | 128,1868 |
(C2×Q8).91C23 = C42.367C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).91C2^3 | 128,1869 |
(C2×Q8).92C23 = C42.241D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).92C2^3 | 128,1871 |
(C2×Q8).93C23 = C42.242D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).93C2^3 | 128,1872 |
(C2×Q8).94C23 = C42.243D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).94C2^3 | 128,1873 |
(C2×Q8).95C23 = C42.244D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).95C2^3 | 128,1874 |
(C2×Q8).96C23 = C2×C8⋊5D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).96C2^3 | 128,1875 |
(C2×Q8).97C23 = C2×C4⋊Q16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).97C2^3 | 128,1877 |
(C2×Q8).98C23 = C2×C8.12D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).98C2^3 | 128,1878 |
(C2×Q8).99C23 = C42.360D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).99C2^3 | 128,1879 |
(C2×Q8).100C23 = C2×C8⋊3D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).100C2^3 | 128,1880 |
(C2×Q8).101C23 = C2×C8.2D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).101C2^3 | 128,1881 |
(C2×Q8).102C23 = C42.247D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).102C2^3 | 128,1882 |
(C2×Q8).103C23 = M4(2)⋊7D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).103C2^3 | 128,1883 |
(C2×Q8).104C23 = M4(2)⋊8D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).104C2^3 | 128,1884 |
(C2×Q8).105C23 = M4(2)⋊9D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).105C2^3 | 128,1885 |
(C2×Q8).106C23 = M4(2)⋊10D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).106C2^3 | 128,1886 |
(C2×Q8).107C23 = M4(2)⋊11D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).107C2^3 | 128,1887 |
(C2×Q8).108C23 = M4(2).20D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).108C2^3 | 128,1888 |
(C2×Q8).109C23 = C42.365D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).109C2^3 | 128,1899 |
(C2×Q8).110C23 = C42.308D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).110C2^3 | 128,1900 |
(C2×Q8).111C23 = C42.367D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).111C2^3 | 128,1902 |
(C2×Q8).112C23 = C42.255D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).112C2^3 | 128,1903 |
(C2×Q8).113C23 = C42.256D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).113C2^3 | 128,1904 |
(C2×Q8).114C23 = C42.385C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).114C2^3 | 128,1905 |
(C2×Q8).115C23 = C42.386C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).115C2^3 | 128,1906 |
(C2×Q8).116C23 = C42.387C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).116C2^3 | 128,1907 |
(C2×Q8).117C23 = C42.389C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).117C2^3 | 128,1909 |
(C2×Q8).118C23 = C42.390C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).118C2^3 | 128,1910 |
(C2×Q8).119C23 = C42.391C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).119C2^3 | 128,1911 |
(C2×Q8).120C23 = C42.257D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).120C2^3 | 128,1912 |
(C2×Q8).121C23 = C42.258D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).121C2^3 | 128,1913 |
(C2×Q8).122C23 = C42.259D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).122C2^3 | 128,1914 |
(C2×Q8).123C23 = C42.260D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).123C2^3 | 128,1915 |
(C2×Q8).124C23 = C42.262D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).124C2^3 | 128,1917 |
(C2×Q8).125C23 = C23⋊4SD16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).125C2^3 | 128,1919 |
(C2×Q8).126C23 = C24.121D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).126C2^3 | 128,1920 |
(C2×Q8).127C23 = C23⋊3Q16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).127C2^3 | 128,1921 |
(C2×Q8).128C23 = C24.123D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).128C2^3 | 128,1922 |
(C2×Q8).129C23 = C24.124D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).129C2^3 | 128,1923 |
(C2×Q8).130C23 = C24.126D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).130C2^3 | 128,1925 |
(C2×Q8).131C23 = C24.127D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).131C2^3 | 128,1926 |
(C2×Q8).132C23 = C24.128D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).132C2^3 | 128,1927 |
(C2×Q8).133C23 = C24.129D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).133C2^3 | 128,1928 |
(C2×Q8).134C23 = C24.130D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).134C2^3 | 128,1929 |
(C2×Q8).135C23 = C4.2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).135C2^3 | 128,1930 |
(C2×Q8).136C23 = C4.152+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).136C2^3 | 128,1932 |
(C2×Q8).137C23 = C4.162+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).137C2^3 | 128,1933 |
(C2×Q8).138C23 = C4.172+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).138C2^3 | 128,1934 |
(C2×Q8).139C23 = C4.182+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).139C2^3 | 128,1935 |
(C2×Q8).140C23 = C4.192+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).140C2^3 | 128,1936 |
(C2×Q8).141C23 = C42.264D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).141C2^3 | 128,1938 |
(C2×Q8).142C23 = C42.265D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).142C2^3 | 128,1939 |
(C2×Q8).143C23 = C42.266D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).143C2^3 | 128,1940 |
(C2×Q8).144C23 = C42.267D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).144C2^3 | 128,1941 |
(C2×Q8).145C23 = C42.268D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).145C2^3 | 128,1942 |
(C2×Q8).146C23 = C42.269D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).146C2^3 | 128,1943 |
(C2×Q8).147C23 = C42.270D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).147C2^3 | 128,1944 |
(C2×Q8).148C23 = C42.271D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).148C2^3 | 128,1945 |
(C2×Q8).149C23 = C42.272D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).149C2^3 | 128,1946 |
(C2×Q8).150C23 = C42.273D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).150C2^3 | 128,1947 |
(C2×Q8).151C23 = C42.274D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).151C2^3 | 128,1948 |
(C2×Q8).152C23 = C42.275D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).152C2^3 | 128,1949 |
(C2×Q8).153C23 = C42.276D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).153C2^3 | 128,1950 |
(C2×Q8).154C23 = C42.277D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).154C2^3 | 128,1951 |
(C2×Q8).155C23 = C42.406C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).155C2^3 | 128,1952 |
(C2×Q8).156C23 = C42.407C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).156C2^3 | 128,1953 |
(C2×Q8).157C23 = C42.408C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).157C2^3 | 128,1954 |
(C2×Q8).158C23 = C42.409C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).158C2^3 | 128,1955 |
(C2×Q8).159C23 = C42.410C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).159C2^3 | 128,1956 |
(C2×Q8).160C23 = C42.411C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).160C2^3 | 128,1957 |
(C2×Q8).161C23 = C42.281D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).161C2^3 | 128,1961 |
(C2×Q8).162C23 = C42.282D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).162C2^3 | 128,1962 |
(C2×Q8).163C23 = C42.283D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).163C2^3 | 128,1963 |
(C2×Q8).164C23 = C42.284D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).164C2^3 | 128,1964 |
(C2×Q8).165C23 = C42.285D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).165C2^3 | 128,1965 |
(C2×Q8).166C23 = C42.288D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).166C2^3 | 128,1968 |
(C2×Q8).167C23 = C42.289D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).167C2^3 | 128,1969 |
(C2×Q8).168C23 = C42.290D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).168C2^3 | 128,1970 |
(C2×Q8).169C23 = C42.291D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).169C2^3 | 128,1971 |
(C2×Q8).170C23 = C42.292D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).170C2^3 | 128,1972 |
(C2×Q8).171C23 = C42.424C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).171C2^3 | 128,1974 |
(C2×Q8).172C23 = C42.425C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).172C2^3 | 128,1975 |
(C2×Q8).173C23 = C42.426C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).173C2^3 | 128,1976 |
(C2×Q8).174C23 = C42.294D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).174C2^3 | 128,1978 |
(C2×Q8).175C23 = C42.295D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).175C2^3 | 128,1979 |
(C2×Q8).176C23 = C42.296D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).176C2^3 | 128,1980 |
(C2×Q8).177C23 = C42.297D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).177C2^3 | 128,1981 |
(C2×Q8).178C23 = C42.298D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).178C2^3 | 128,1982 |
(C2×Q8).179C23 = C42.299D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).179C2^3 | 128,1983 |
(C2×Q8).180C23 = C42.300D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).180C2^3 | 128,1984 |
(C2×Q8).181C23 = C42.302D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).181C2^3 | 128,1986 |
(C2×Q8).182C23 = C42.303D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).182C2^3 | 128,1987 |
(C2×Q8).183C23 = C42.304D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).183C2^3 | 128,1988 |
(C2×Q8).184C23 = C4.2- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).184C2^3 | 128,1989 |
(C2×Q8).185C23 = C42.25C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).185C2^3 | 128,1990 |
(C2×Q8).186C23 = C42.27C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).186C2^3 | 128,1992 |
(C2×Q8).187C23 = C42.28C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).187C2^3 | 128,1993 |
(C2×Q8).188C23 = C42.29C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).188C2^3 | 128,1994 |
(C2×Q8).189C23 = C42.30C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).189C2^3 | 128,1995 |
(C2×Q8).190C23 = D8⋊9D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).190C2^3 | 128,1996 |
(C2×Q8).191C23 = SD16⋊6D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).191C2^3 | 128,1998 |
(C2×Q8).192C23 = D8⋊10D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).192C2^3 | 128,1999 |
(C2×Q8).193C23 = SD16⋊8D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).193C2^3 | 128,2001 |
(C2×Q8).194C23 = D8⋊4D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).194C2^3 | 128,2004 |
(C2×Q8).195C23 = D8⋊5D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).195C2^3 | 128,2005 |
(C2×Q8).196C23 = SD16⋊2D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).196C2^3 | 128,2007 |
(C2×Q8).197C23 = SD16⋊3D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).197C2^3 | 128,2008 |
(C2×Q8).198C23 = Q16⋊5D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).198C2^3 | 128,2010 |
(C2×Q8).199C23 = D8⋊12D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).199C2^3 | 128,2012 |
(C2×Q8).200C23 = D4×SD16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).200C2^3 | 128,2013 |
(C2×Q8).201C23 = SD16⋊10D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).201C2^3 | 128,2014 |
(C2×Q8).202C23 = D8⋊13D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).202C2^3 | 128,2015 |
(C2×Q8).203C23 = SD16⋊11D4 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).203C2^3 | 128,2016 |
(C2×Q8).204C23 = D4⋊7SD16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).204C2^3 | 128,2027 |
(C2×Q8).205C23 = C42.461C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).205C2^3 | 128,2028 |
(C2×Q8).206C23 = C42.462C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).206C2^3 | 128,2029 |
(C2×Q8).207C23 = D4⋊8SD16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).207C2^3 | 128,2030 |
(C2×Q8).208C23 = D4⋊5Q16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).208C2^3 | 128,2031 |
(C2×Q8).209C23 = C42.465C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).209C2^3 | 128,2032 |
(C2×Q8).210C23 = C42.467C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).210C2^3 | 128,2034 |
(C2×Q8).211C23 = C42.468C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).211C2^3 | 128,2035 |
(C2×Q8).212C23 = C42.469C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).212C2^3 | 128,2036 |
(C2×Q8).213C23 = C42.41C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).213C2^3 | 128,2038 |
(C2×Q8).214C23 = C42.42C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).214C2^3 | 128,2039 |
(C2×Q8).215C23 = C42.45C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).215C2^3 | 128,2042 |
(C2×Q8).216C23 = C42.46C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).216C2^3 | 128,2043 |
(C2×Q8).217C23 = C42.47C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).217C2^3 | 128,2044 |
(C2×Q8).218C23 = C42.48C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).218C2^3 | 128,2045 |
(C2×Q8).219C23 = C42.49C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).219C2^3 | 128,2046 |
(C2×Q8).220C23 = C42.50C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).220C2^3 | 128,2047 |
(C2×Q8).221C23 = C42.51C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).221C2^3 | 128,2048 |
(C2×Q8).222C23 = C42.52C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).222C2^3 | 128,2049 |
(C2×Q8).223C23 = C42.54C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).223C2^3 | 128,2051 |
(C2×Q8).224C23 = C42.56C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).224C2^3 | 128,2053 |
(C2×Q8).225C23 = C42.471C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).225C2^3 | 128,2054 |
(C2×Q8).226C23 = C42.472C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).226C2^3 | 128,2055 |
(C2×Q8).227C23 = C42.473C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).227C2^3 | 128,2056 |
(C2×Q8).228C23 = C42.476C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).228C2^3 | 128,2059 |
(C2×Q8).229C23 = C42.477C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).229C2^3 | 128,2060 |
(C2×Q8).230C23 = C42.479C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).230C2^3 | 128,2062 |
(C2×Q8).231C23 = C42.480C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).231C2^3 | 128,2063 |
(C2×Q8).232C23 = C42.482C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).232C2^3 | 128,2065 |
(C2×Q8).233C23 = D4⋊9SD16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).233C2^3 | 128,2067 |
(C2×Q8).234C23 = C42.485C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).234C2^3 | 128,2068 |
(C2×Q8).235C23 = C42.486C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).235C2^3 | 128,2069 |
(C2×Q8).236C23 = D4⋊6Q16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).236C2^3 | 128,2070 |
(C2×Q8).237C23 = C42.489C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).237C2^3 | 128,2072 |
(C2×Q8).238C23 = C42.491C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).238C2^3 | 128,2074 |
(C2×Q8).239C23 = C42.57C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).239C2^3 | 128,2075 |
(C2×Q8).240C23 = C42.58C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).240C2^3 | 128,2076 |
(C2×Q8).241C23 = C42.60C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).241C2^3 | 128,2078 |
(C2×Q8).242C23 = C42.62C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).242C2^3 | 128,2080 |
(C2×Q8).243C23 = C42.63C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).243C2^3 | 128,2081 |
(C2×Q8).244C23 = C42.64C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).244C2^3 | 128,2082 |
(C2×Q8).245C23 = C42.492C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).245C2^3 | 128,2083 |
(C2×Q8).246C23 = C42.493C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).246C2^3 | 128,2084 |
(C2×Q8).247C23 = C42.494C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).247C2^3 | 128,2085 |
(C2×Q8).248C23 = C42.497C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).248C2^3 | 128,2088 |
(C2×Q8).249C23 = C42.498C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).249C2^3 | 128,2089 |
(C2×Q8).250C23 = Q8⋊7SD16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).250C2^3 | 128,2091 |
(C2×Q8).251C23 = C42.501C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).251C2^3 | 128,2092 |
(C2×Q8).252C23 = C42.502C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).252C2^3 | 128,2093 |
(C2×Q8).253C23 = Q8⋊5Q16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).253C2^3 | 128,2095 |
(C2×Q8).254C23 = C42.505C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).254C2^3 | 128,2096 |
(C2×Q8).255C23 = C42.508C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).255C2^3 | 128,2099 |
(C2×Q8).256C23 = C42.510C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).256C2^3 | 128,2101 |
(C2×Q8).257C23 = C42.511C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).257C2^3 | 128,2102 |
(C2×Q8).258C23 = C42.513C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).258C2^3 | 128,2104 |
(C2×Q8).259C23 = C42.514C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).259C2^3 | 128,2105 |
(C2×Q8).260C23 = C42.515C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).260C2^3 | 128,2106 |
(C2×Q8).261C23 = C42.517C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).261C2^3 | 128,2108 |
(C2×Q8).262C23 = C42.518C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).262C2^3 | 128,2109 |
(C2×Q8).263C23 = Q8⋊9SD16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).263C2^3 | 128,2124 |
(C2×Q8).264C23 = C42.527C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).264C2^3 | 128,2125 |
(C2×Q8).265C23 = C42.528C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).265C2^3 | 128,2126 |
(C2×Q8).266C23 = Q8⋊6Q16 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 128 | | (C2xQ8).266C2^3 | 128,2127 |
(C2×Q8).267C23 = C42.530C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).267C2^3 | 128,2128 |
(C2×Q8).268C23 = C42.72C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).268C2^3 | 128,2129 |
(C2×Q8).269C23 = C42.73C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).269C2^3 | 128,2130 |
(C2×Q8).270C23 = C42.74C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).270C2^3 | 128,2131 |
(C2×Q8).271C23 = C42.75C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).271C2^3 | 128,2132 |
(C2×Q8).272C23 = C42.531C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).272C2^3 | 128,2133 |
(C2×Q8).273C23 = C42.532C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).273C2^3 | 128,2134 |
(C2×Q8).274C23 = C42.533C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).274C2^3 | 128,2135 |
(C2×Q8).275C23 = C2×C22.33C24 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).275C2^3 | 128,2183 |
(C2×Q8).276C23 = C2×C23.41C23 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).276C2^3 | 128,2189 |
(C2×Q8).277C23 = C22.47C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).277C2^3 | 128,2190 |
(C2×Q8).278C23 = C22.48C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).278C2^3 | 128,2191 |
(C2×Q8).279C23 = C2×D4⋊3Q8 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).279C2^3 | 128,2204 |
(C2×Q8).280C23 = C2×C22.49C24 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).280C2^3 | 128,2205 |
(C2×Q8).281C23 = C22.64C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).281C2^3 | 128,2207 |
(C2×Q8).282C23 = C22.70C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).282C2^3 | 128,2213 |
(C2×Q8).283C23 = C22.80C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).283C2^3 | 128,2223 |
(C2×Q8).284C23 = C22.81C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).284C2^3 | 128,2224 |
(C2×Q8).285C23 = C22.82C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).285C2^3 | 128,2225 |
(C2×Q8).286C23 = C22.83C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).286C2^3 | 128,2226 |
(C2×Q8).287C23 = C22.90C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).287C2^3 | 128,2233 |
(C2×Q8).288C23 = C22.92C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).288C2^3 | 128,2235 |
(C2×Q8).289C23 = C22.93C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).289C2^3 | 128,2236 |
(C2×Q8).290C23 = C22.95C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).290C2^3 | 128,2238 |
(C2×Q8).291C23 = C22.99C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).291C2^3 | 128,2242 |
(C2×Q8).292C23 = C22.100C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).292C2^3 | 128,2243 |
(C2×Q8).293C23 = C22.102C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).293C2^3 | 128,2245 |
(C2×Q8).294C23 = C22.108C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).294C2^3 | 128,2251 |
(C2×Q8).295C23 = C2×C22.56C24 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).295C2^3 | 128,2259 |
(C2×Q8).296C23 = C2×C22.57C24 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).296C2^3 | 128,2260 |
(C2×Q8).297C23 = C22.118C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).297C2^3 | 128,2261 |
(C2×Q8).298C23 = C22.120C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).298C2^3 | 128,2263 |
(C2×Q8).299C23 = C22.122C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).299C2^3 | 128,2265 |
(C2×Q8).300C23 = C22.123C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).300C2^3 | 128,2266 |
(C2×Q8).301C23 = C22.124C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).301C2^3 | 128,2267 |
(C2×Q8).302C23 = C22.126C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).302C2^3 | 128,2269 |
(C2×Q8).303C23 = C22.127C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).303C2^3 | 128,2270 |
(C2×Q8).304C23 = C22.129C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).304C2^3 | 128,2272 |
(C2×Q8).305C23 = C22.133C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).305C2^3 | 128,2276 |
(C2×Q8).306C23 = C22.134C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).306C2^3 | 128,2277 |
(C2×Q8).307C23 = C22.136C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).307C2^3 | 128,2279 |
(C2×Q8).308C23 = C22.138C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).308C2^3 | 128,2281 |
(C2×Q8).309C23 = C22.139C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).309C2^3 | 128,2282 |
(C2×Q8).310C23 = C22.140C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).310C2^3 | 128,2283 |
(C2×Q8).311C23 = C22.142C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).311C2^3 | 128,2285 |
(C2×Q8).312C23 = C22.146C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).312C2^3 | 128,2289 |
(C2×Q8).313C23 = C22.147C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).313C2^3 | 128,2290 |
(C2×Q8).314C23 = C22.148C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).314C2^3 | 128,2291 |
(C2×Q8).315C23 = C22.149C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).315C2^3 | 128,2292 |
(C2×Q8).316C23 = C22.150C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).316C2^3 | 128,2293 |
(C2×Q8).317C23 = C22.152C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).317C2^3 | 128,2295 |
(C2×Q8).318C23 = C22.153C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).318C2^3 | 128,2296 |
(C2×Q8).319C23 = C22.154C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).319C2^3 | 128,2297 |
(C2×Q8).320C23 = C22.155C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).320C2^3 | 128,2298 |
(C2×Q8).321C23 = C22.156C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).321C2^3 | 128,2299 |
(C2×Q8).322C23 = C22.157C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | | (C2xQ8).322C2^3 | 128,2300 |
(C2×Q8).323C23 = C2×Q8○D8 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 64 | | (C2xQ8).323C2^3 | 128,2315 |
(C2×Q8).324C23 = C8.C24 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).324C2^3 | 128,2316 |
(C2×Q8).325C23 = C4.C25 | φ: C23/C2 → C22 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).325C2^3 | 128,2318 |
(C2×Q8).326C23 = C22×C4.10D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).326C2^3 | 128,1618 |
(C2×Q8).327C23 = C2×M4(2).8C22 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).327C2^3 | 128,1619 |
(C2×Q8).328C23 = M4(2).24C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 16 | 8+ | (C2xQ8).328C2^3 | 128,1620 |
(C2×Q8).329C23 = M4(2).25C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).329C2^3 | 128,1621 |
(C2×Q8).330C23 = C22×Q8⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).330C2^3 | 128,1623 |
(C2×Q8).331C23 = C2×C23.24D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).331C2^3 | 128,1624 |
(C2×Q8).332C23 = C2×C23.38D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).332C2^3 | 128,1626 |
(C2×Q8).333C23 = C2×C23.36D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).333C2^3 | 128,1627 |
(C2×Q8).334C23 = C24.98D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).334C2^3 | 128,1628 |
(C2×Q8).335C23 = 2+ 1+4⋊5C4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).335C2^3 | 128,1629 |
(C2×Q8).336C23 = 2- 1+4⋊4C4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).336C2^3 | 128,1630 |
(C2×Q8).337C23 = C2×C4×SD16 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).337C2^3 | 128,1669 |
(C2×Q8).338C23 = C2×C4×Q16 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).338C2^3 | 128,1670 |
(C2×Q8).339C23 = C4×C4○D8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).339C2^3 | 128,1671 |
(C2×Q8).340C23 = C2×SD16⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).340C2^3 | 128,1672 |
(C2×Q8).341C23 = C2×Q16⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).341C2^3 | 128,1673 |
(C2×Q8).342C23 = C42.383D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).342C2^3 | 128,1675 |
(C2×Q8).343C23 = C4×C8⋊C22 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).343C2^3 | 128,1676 |
(C2×Q8).344C23 = C4×C8.C22 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).344C2^3 | 128,1677 |
(C2×Q8).345C23 = C42.275C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).345C2^3 | 128,1678 |
(C2×Q8).346C23 = C42.276C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).346C2^3 | 128,1679 |
(C2×Q8).347C23 = C42.278C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).347C2^3 | 128,1681 |
(C2×Q8).348C23 = C42.279C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).348C2^3 | 128,1682 |
(C2×Q8).349C23 = C42.280C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).349C2^3 | 128,1683 |
(C2×Q8).350C23 = C42.281C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).350C2^3 | 128,1684 |
(C2×Q8).351C23 = C2×Q8⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).351C2^3 | 128,1730 |
(C2×Q8).352C23 = C2×D4⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).352C2^3 | 128,1732 |
(C2×Q8).353C23 = C24.105D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).353C2^3 | 128,1738 |
(C2×Q8).354C23 = C4○D4⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).354C2^3 | 128,1740 |
(C2×Q8).355C23 = (C2×Q8)⋊16D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).355C2^3 | 128,1742 |
(C2×Q8).356C23 = (C2×Q8)⋊17D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).356C2^3 | 128,1745 |
(C2×Q8).357C23 = C2×C4⋊SD16 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).357C2^3 | 128,1764 |
(C2×Q8).358C23 = C42.212D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).358C2^3 | 128,1769 |
(C2×Q8).359C23 = C42.444D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).359C2^3 | 128,1770 |
(C2×Q8).360C23 = C42.16C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).360C2^3 | 128,1775 |
(C2×Q8).361C23 = C2×Q8⋊Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).361C2^3 | 128,1805 |
(C2×Q8).362C23 = C2×C4.Q16 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).362C2^3 | 128,1806 |
(C2×Q8).363C23 = C2×Q8.Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).363C2^3 | 128,1807 |
(C2×Q8).364C23 = C42.447D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).364C2^3 | 128,1808 |
(C2×Q8).365C23 = C42.220D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).365C2^3 | 128,1810 |
(C2×Q8).366C23 = C42.448D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).366C2^3 | 128,1811 |
(C2×Q8).367C23 = C42.449D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).367C2^3 | 128,1812 |
(C2×Q8).368C23 = C42.21C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).368C2^3 | 128,1814 |
(C2×Q8).369C23 = C42.22C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).369C2^3 | 128,1815 |
(C2×Q8).370C23 = C42.23C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).370C2^3 | 128,1816 |
(C2×Q8).371C23 = C42.384D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).371C2^3 | 128,1834 |
(C2×Q8).372C23 = C42.223D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).372C2^3 | 128,1835 |
(C2×Q8).373C23 = C42.224D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).373C2^3 | 128,1836 |
(C2×Q8).374C23 = C42.450D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).374C2^3 | 128,1838 |
(C2×Q8).375C23 = C42.226D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).375C2^3 | 128,1840 |
(C2×Q8).376C23 = C42.229D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).376C2^3 | 128,1843 |
(C2×Q8).377C23 = C42.230D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).377C2^3 | 128,1844 |
(C2×Q8).378C23 = C42.233D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).378C2^3 | 128,1847 |
(C2×Q8).379C23 = C42.235D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).379C2^3 | 128,1849 |
(C2×Q8).380C23 = C42.353C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).380C2^3 | 128,1851 |
(C2×Q8).381C23 = C42.355C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).381C2^3 | 128,1853 |
(C2×Q8).382C23 = C42.358C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).382C2^3 | 128,1856 |
(C2×Q8).383C23 = C42.360C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).383C2^3 | 128,1858 |
(C2×Q8).384C23 = C42.361C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).384C2^3 | 128,1859 |
(C2×Q8).385C23 = SD16⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).385C2^3 | 128,1997 |
(C2×Q8).386C23 = SD16⋊7D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).386C2^3 | 128,2000 |
(C2×Q8).387C23 = Q16⋊9D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).387C2^3 | 128,2002 |
(C2×Q8).388C23 = Q16⋊10D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).388C2^3 | 128,2003 |
(C2×Q8).389C23 = SD16⋊1D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).389C2^3 | 128,2006 |
(C2×Q8).390C23 = Q16⋊4D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).390C2^3 | 128,2009 |
(C2×Q8).391C23 = Q16⋊12D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).391C2^3 | 128,2017 |
(C2×Q8).392C23 = D4×Q16 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).392C2^3 | 128,2018 |
(C2×Q8).393C23 = Q16⋊13D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).393C2^3 | 128,2019 |
(C2×Q8).394C23 = C42.466C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).394C2^3 | 128,2033 |
(C2×Q8).395C23 = C42.470C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).395C2^3 | 128,2037 |
(C2×Q8).396C23 = C42.43C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).396C2^3 | 128,2040 |
(C2×Q8).397C23 = C42.44C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).397C2^3 | 128,2041 |
(C2×Q8).398C23 = C42.55C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).398C2^3 | 128,2052 |
(C2×Q8).399C23 = C42.475C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).399C2^3 | 128,2058 |
(C2×Q8).400C23 = C42.478C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).400C2^3 | 128,2061 |
(C2×Q8).401C23 = C42.481C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).401C2^3 | 128,2064 |
(C2×Q8).402C23 = Q8⋊8SD16 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).402C2^3 | 128,2094 |
(C2×Q8).403C23 = C42.506C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).403C2^3 | 128,2097 |
(C2×Q8).404C23 = C42.509C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).404C2^3 | 128,2100 |
(C2×Q8).405C23 = C42.512C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).405C2^3 | 128,2103 |
(C2×Q8).406C23 = C42.516C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).406C2^3 | 128,2107 |
(C2×Q8).407C23 = Q8×SD16 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).407C2^3 | 128,2111 |
(C2×Q8).408C23 = SD16⋊4Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).408C2^3 | 128,2113 |
(C2×Q8).409C23 = Q8×Q16 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).409C2^3 | 128,2114 |
(C2×Q8).410C23 = Q16⋊6Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).410C2^3 | 128,2115 |
(C2×Q8).411C23 = SD16⋊Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).411C2^3 | 128,2117 |
(C2×Q8).412C23 = SD16⋊2Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).412C2^3 | 128,2118 |
(C2×Q8).413C23 = Q16⋊4Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).413C2^3 | 128,2119 |
(C2×Q8).414C23 = SD16⋊3Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).414C2^3 | 128,2120 |
(C2×Q8).415C23 = Q16⋊5Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).415C2^3 | 128,2122 |
(C2×Q8).416C23 = C2×C23.36C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).416C2^3 | 128,2171 |
(C2×Q8).417C23 = C22×C4⋊Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).417C2^3 | 128,2173 |
(C2×Q8).418C23 = C2×C22.26C24 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).418C2^3 | 128,2174 |
(C2×Q8).419C23 = C2×C23.37C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).419C2^3 | 128,2175 |
(C2×Q8).420C23 = C22.33C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).420C2^3 | 128,2176 |
(C2×Q8).421C23 = C2×C23.38C23 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).421C2^3 | 128,2179 |
(C2×Q8).422C23 = C2×C22.31C24 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).422C2^3 | 128,2180 |
(C2×Q8).423C23 = C22.38C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).423C2^3 | 128,2181 |
(C2×Q8).424C23 = C2×C22.35C24 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).424C2^3 | 128,2185 |
(C2×Q8).425C23 = C2×C22.36C24 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).425C2^3 | 128,2186 |
(C2×Q8).426C23 = C22.44C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).426C2^3 | 128,2187 |
(C2×Q8).427C23 = C22.49C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).427C2^3 | 128,2192 |
(C2×Q8).428C23 = C22.50C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).428C2^3 | 128,2193 |
(C2×Q8).429C23 = C2×D4⋊6D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).429C2^3 | 128,2196 |
(C2×Q8).430C23 = C2×D4×Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).430C2^3 | 128,2198 |
(C2×Q8).431C23 = D4×C4○D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).431C2^3 | 128,2200 |
(C2×Q8).432C23 = C2×C22.46C24 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).432C2^3 | 128,2202 |
(C2×Q8).433C23 = C2×C22.50C24 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).433C2^3 | 128,2206 |
(C2×Q8).434C23 = C2×Q8⋊3Q8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).434C2^3 | 128,2208 |
(C2×Q8).435C23 = Q8×C4○D4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).435C2^3 | 128,2210 |
(C2×Q8).436C23 = C2×C22.53C24 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).436C2^3 | 128,2211 |
(C2×Q8).437C23 = C22.69C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).437C2^3 | 128,2212 |
(C2×Q8).438C23 = C22.71C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).438C2^3 | 128,2214 |
(C2×Q8).439C23 = C22.74C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).439C2^3 | 128,2217 |
(C2×Q8).440C23 = C22.75C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).440C2^3 | 128,2218 |
(C2×Q8).441C23 = C22.76C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).441C2^3 | 128,2219 |
(C2×Q8).442C23 = C22.77C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).442C2^3 | 128,2220 |
(C2×Q8).443C23 = C22.78C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).443C2^3 | 128,2221 |
(C2×Q8).444C23 = C22.84C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).444C2^3 | 128,2227 |
(C2×Q8).445C23 = C4⋊2+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).445C2^3 | 128,2228 |
(C2×Q8).446C23 = C4⋊2- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).446C2^3 | 128,2229 |
(C2×Q8).447C23 = C22.87C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).447C2^3 | 128,2230 |
(C2×Q8).448C23 = C22.88C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).448C2^3 | 128,2231 |
(C2×Q8).449C23 = C22.89C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).449C2^3 | 128,2232 |
(C2×Q8).450C23 = C22.94C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).450C2^3 | 128,2237 |
(C2×Q8).451C23 = C22.96C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).451C2^3 | 128,2239 |
(C2×Q8).452C23 = C22.97C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).452C2^3 | 128,2240 |
(C2×Q8).453C23 = C22.98C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).453C2^3 | 128,2241 |
(C2×Q8).454C23 = C22.101C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).454C2^3 | 128,2244 |
(C2×Q8).455C23 = C22.103C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).455C2^3 | 128,2246 |
(C2×Q8).456C23 = C22.104C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).456C2^3 | 128,2247 |
(C2×Q8).457C23 = C22.107C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).457C2^3 | 128,2250 |
(C2×Q8).458C23 = C23.144C24 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).458C2^3 | 128,2252 |
(C2×Q8).459C23 = C22.110C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).459C2^3 | 128,2253 |
(C2×Q8).460C23 = C23.146C24 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).460C2^3 | 128,2255 |
(C2×Q8).461C23 = C22.125C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).461C2^3 | 128,2268 |
(C2×Q8).462C23 = C22.128C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).462C2^3 | 128,2271 |
(C2×Q8).463C23 = C22.130C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).463C2^3 | 128,2273 |
(C2×Q8).464C23 = C22.131C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).464C2^3 | 128,2274 |
(C2×Q8).465C23 = C22.132C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).465C2^3 | 128,2275 |
(C2×Q8).466C23 = C22.135C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).466C2^3 | 128,2278 |
(C2×Q8).467C23 = C22.137C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).467C2^3 | 128,2280 |
(C2×Q8).468C23 = C22.141C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).468C2^3 | 128,2284 |
(C2×Q8).469C23 = C22.143C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).469C2^3 | 128,2286 |
(C2×Q8).470C23 = C22.144C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).470C2^3 | 128,2287 |
(C2×Q8).471C23 = C22.145C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).471C2^3 | 128,2288 |
(C2×Q8).472C23 = C22.151C25 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).472C2^3 | 128,2294 |
(C2×Q8).473C23 = C23×Q16 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 128 | | (C2xQ8).473C2^3 | 128,2308 |
(C2×Q8).474C23 = C22×C4○D8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 64 | | (C2xQ8).474C2^3 | 128,2309 |
(C2×Q8).475C23 = C2×D4○D8 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | | (C2xQ8).475C2^3 | 128,2313 |
(C2×Q8).476C23 = 2- 1+6 | φ: C23/C22 → C2 ⊆ Out C2×Q8 | 32 | 8- | (C2xQ8).476C2^3 | 128,2327 |
(C2×Q8).477C23 = Q8×C22×C4 | φ: trivial image | 128 | | (C2xQ8).477C2^3 | 128,2155 |
(C2×Q8).478C23 = C2×C4×C4○D4 | φ: trivial image | 64 | | (C2xQ8).478C2^3 | 128,2156 |
(C2×Q8).479C23 = C2×C23.32C23 | φ: trivial image | 64 | | (C2xQ8).479C2^3 | 128,2158 |
(C2×Q8).480C23 = C2×C23.33C23 | φ: trivial image | 64 | | (C2xQ8).480C2^3 | 128,2159 |
(C2×Q8).481C23 = C22.14C25 | φ: trivial image | 32 | | (C2xQ8).481C2^3 | 128,2160 |
(C2×Q8).482C23 = C4×2+ 1+4 | φ: trivial image | 32 | | (C2xQ8).482C2^3 | 128,2161 |
(C2×Q8).483C23 = C4×2- 1+4 | φ: trivial image | 64 | | (C2xQ8).483C2^3 | 128,2162 |
(C2×Q8).484C23 = C2×Q8⋊5D4 | φ: trivial image | 64 | | (C2xQ8).484C2^3 | 128,2197 |
(C2×Q8).485C23 = C2×Q8⋊6D4 | φ: trivial image | 64 | | (C2xQ8).485C2^3 | 128,2199 |
(C2×Q8).486C23 = C2×Q82 | φ: trivial image | 128 | | (C2xQ8).486C2^3 | 128,2209 |
(C2×Q8).487C23 = C22.72C25 | φ: trivial image | 64 | | (C2xQ8).487C2^3 | 128,2215 |
(C2×Q8).488C23 = C22.91C25 | φ: trivial image | 64 | | (C2xQ8).488C2^3 | 128,2234 |
(C2×Q8).489C23 = C22.105C25 | φ: trivial image | 64 | | (C2xQ8).489C2^3 | 128,2248 |
(C2×Q8).490C23 = C22.106C25 | φ: trivial image | 64 | | (C2xQ8).490C2^3 | 128,2249 |
(C2×Q8).491C23 = C22.111C25 | φ: trivial image | 64 | | (C2xQ8).491C2^3 | 128,2254 |
(C2×Q8).492C23 = C22.113C25 | φ: trivial image | 64 | | (C2xQ8).492C2^3 | 128,2256 |